100 research outputs found

    Stima del movimento nella sintesi di immagini panoramiche in tempo reale su piattaforma DSP

    Get PDF
    La problematica centrale per la ricostruzione di immagini panoramiche da una sequenza video è la stima del movimento tra coppie di fotogrammi. Dopo un'analisi degli stimatori di moto noti in letteratura è stato proposto e caratterizzato un nuovo operatore di stima del movimento, le cui prestazioni sono state confrontate con algoritmi noti. Un algoritmo di stima del moto basato sul nuovo operatore è stato poi implementato su un sistema di elaborazione video in tempo reale: l'MVE I

    Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology

    Full text link
    Stain variation is a phenomenon observed when distinct pathology laboratories stain tissue slides that exhibit similar but not identical color appearance. Due to this color shift between laboratories, convolutional neural networks (CNNs) trained with images from one lab often underperform on unseen images from the other lab. Several techniques have been proposed to reduce the generalization error, mainly grouped into two categories: stain color augmentation and stain color normalization. The former simulates a wide variety of realistic stain variations during training, producing stain-invariant CNNs. The latter aims to match training and test color distributions in order to reduce stain variation. For the first time, we compared some of these techniques and quantified their effect on CNN classification performance using a heterogeneous dataset of hematoxylin and eosin histopathology images from 4 organs and 9 pathology laboratories. Additionally, we propose a novel unsupervised method to perform stain color normalization using a neural network. Based on our experimental results, we provide practical guidelines on how to use stain color augmentation and stain color normalization in future computational pathology applications.Comment: Accepted in the Medical Image Analysis journa

    HookNet: multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images

    Full text link
    We propose HookNet, a semantic segmentation model for histopathology whole-slide images, which combines context and details via multiple branches of encoder-decoder convolutional neural networks. Concentricpatches at multiple resolutions with different fields of view are used to feed different branches of HookNet, and intermediate representations are combined via a hooking mechanism. We describe a framework to design and train HookNet for achieving high-resolution semantic segmentation and introduce constraints to guarantee pixel-wise alignment in feature maps during hooking. We show the advantages of using HookNet in two histopathology image segmentation tasks where tissue type prediction accuracy strongly depends on contextual information, namely (1) multi-class tissue segmentation in breast cancer and, (2) segmentation of tertiary lymphoid structures and germinal centers in lung cancer. Weshow the superiority of HookNet when compared with single-resolution U-Net models working at different resolutions as well as with a recently published multi-resolution model for histopathology image segmentatio

    Assessment Of Intra-coronary Stent Location And Extension In Intravascular Ultrasound Sequences.

    Full text link
    Purpose An intraluminal coronary stent is a metal scaffold deployed in a stenotic artery during percutaneous coronary intervention (PCI). In order to have an effective deployment, a stent should be optimally placed with regard to anatomical structures such as bifurcations and stenoses. Intravascular ultrasound (IVUS) is a catheter-based imaging technique generally used for PCI guiding and assessing the correct placement of the stent. A novel approach that automatically detects the boundaries and the position of the stent along the IVUS pullback is presented. Such a technique aims at optimizing the stent deployment. Methods The method requires the identification of the stable frames of the sequence and the reliable detection of stent struts. Using these data, a measure of likelihood for a frame to contain a stent is computed. Then, a robust binary representation of the presence of the stent in the pullback is obtained applying an iterative and multiscale quantization of the signal to symbols using the Symbolic Aggregate approXimation algorithm. Results The technique was extensively validated on a set of 103 IVUS of sequences of in vivo coronary arteries containing metallic and bioabsorbable stents acquired through an international multicentric collaboration across five clinical centers. The method was able to detect the stent position with an overall F-measure of 86.4%, a Jaccard index score of 75% and a mean distance of 2.5 mm from manually annotated stent boundaries, and in bioabsorbable stents with an overall F-measure of 88.6%, a Jaccard score of 77.7 and a mean distance of 1.5 mm from manually annotated stent boundaries. Additionally, a map indicating the distance between the lumen and the stent along the pullback is created in order to show the angular sectors of the sequence in which the malapposition is present. Conclusions Results obtained comparing the automatic results vs the manual annotation of two observers shows that the method approaches the interobserver variability. Similar performances are obtained on both metallic and bioabsorbable stents, showing the flexibility and robustness of the method

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Towards automatic pulmonary nodule management in lung cancer screening with deep learning

    Get PDF
    The introduction of lung cancer screening programs will produce an unprecedented amount of chest CT scans in the near future, which radiologists will have to read in order to decide on a patient follow-up strategy. According to the current guidelines, the workup of screen-detected nodules strongly relies on nodule size and nodule type. In this paper, we present a deep learning system based on multi-stream multi-scale convolutional networks, which automatically classifies all nodule types relevant for nodule workup. The system processes raw CT data containing a nodule without the need for any additional information such as nodule segmentation or nodule size and learns a representation of 3D data by analyzing an arbitrary number of 2D views of a given nodule. The deep learning system was trained with data from the Italian MILD screening trial and validated on an independent set of data from the Danish DLCST screening trial. We analyze the advantage of processing nodules at multiple scales with a multi-stream convolutional network architecture, and we show that the proposed deep learning system achieves performance at classifying nodule type that surpasses the one of classical machine learning approaches and is within the inter-observer variability among four experienced human observers.Comment: Published on Scientific Report

    Comparison of Different Methods for Tissue Segmentation in Histopathological Whole-Slide Images

    Full text link
    Tissue segmentation is an important pre-requisite for efficient and accurate diagnostics in digital pathology. However, it is well known that whole-slide scanners can fail in detecting all tissue regions, for example due to the tissue type, or due to weak staining because their tissue detection algorithms are not robust enough. In this paper, we introduce two different convolutional neural network architectures for whole slide image segmentation to accurately identify the tissue sections. We also compare the algorithms to a published traditional method. We collected 54 whole slide images with differing stains and tissue types from three laboratories to validate our algorithms. We show that while the two methods do not differ significantly they outperform their traditional counterpart (Jaccard index of 0.937 and 0.929 vs. 0.870, p < 0.01).Comment: Accepted for poster presentation at the IEEE International Symposium on Biomedical Imaging (ISBI) 201
    corecore